Harmonic Maps and Torse-Forming Vector Fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Concircular and Torse-forming Vector Fields on Compact Manifolds

In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphically projective mappings of special compact spaces without boundary.

متن کامل

Harmonic-killing Vector Fields *

In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.

متن کامل

Harmonic-Killing vector fields on Kähler manifolds

In a previous paper we have considered the harmonicity of local infinitesimal transformations associated to a vector field on a (pseudo)-Riemannian manifold to characterise intrinsi-cally a class of vector fields that we have called harmonic-Killing vector fields. In this paper we extend this study to other properties, such as the pluriharmonicity and the α-pluriharmonicity (α harmonic 2-form) ...

متن کامل

Harmonic Maps and Biharmonic Maps

This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.

متن کامل

Harmonic Analysis on Vector Spaces over Finite Fields

• (i) G = ZN = Z/NZ = {0, 1, 2, ....., N − 1} with addition modulo N . For 0 ≤ n ≤ N − 1 let γn : G → S, γn(m) = exp(2πimn/N). Then {γ0, ....., γN−1} is a complete list of the characters so that ZN is isomorphic to ZN . An example of a primitive N ’th root of unity is ω := exp 2πi/N . • (ii) G = T = R/Z; for n ∈ Z let γn : G→ S, γn(x) = exp(2πinx). Then G∗ = {γn : n ∈ Z} so that G∗ is isomorphi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Electronic Journal of Geometry

سال: 2020

ISSN: 1307-5624

DOI: 10.36890/iejg.555344